3.114 \(\int \frac{c+d x}{\sqrt{-1-x^3}} \, dx\)

Optimal. Leaf size=261 \[ \frac{2 \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{\sqrt [4]{3} \sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}}-\frac{2 d \sqrt{-x^3-1}}{x-\sqrt{3}+1}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} d (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}} \]

[Out]

(-2*d*Sqrt[-1 - x^3])/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*d*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3]
 + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3]
+ x)^2)]*Sqrt[-1 - x^3]) + (2*Sqrt[2 - Sqrt[3]]*(c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3]
+ x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 - S
qrt[3] + x)^2)]*Sqrt[-1 - x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0777453, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {1880, 219, 1879} \[ \frac{2 \sqrt{2-\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) F\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}}-\frac{2 d \sqrt{-x^3-1}}{x-\sqrt{3}+1}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} d (x+1) \sqrt{\frac{x^2-x+1}{\left (x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x+\sqrt{3}+1}{x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{x+1}{\left (x-\sqrt{3}+1\right )^2}} \sqrt{-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)/Sqrt[-1 - x^3],x]

[Out]

(-2*d*Sqrt[-1 - x^3])/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*d*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3]
 + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3]
+ x)^2)]*Sqrt[-1 - x^3]) + (2*Sqrt[2 - Sqrt[3]]*(c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3]
+ x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 - S
qrt[3] + x)^2)]*Sqrt[-1 - x^3])

Rule 1880

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 + Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 + Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && NeQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 1879

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 + Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 + Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 - Sqrt[3])*s + r*x)), x
] + Simp[(3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[-((s
*(s + r*x))/((1 - Sqrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{c+d x}{\sqrt{-1-x^3}} \, dx &=d \int \frac{1+\sqrt{3}+x}{\sqrt{-1-x^3}} \, dx+\left (c-\left (1+\sqrt{3}\right ) d\right ) \int \frac{1}{\sqrt{-1-x^3}} \, dx\\ &=-\frac{2 d \sqrt{-1-x^3}}{1-\sqrt{3}+x}+\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} d (1+x) \sqrt{\frac{1-x+x^2}{\left (1-\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1+\sqrt{3}+x}{1-\sqrt{3}+x}\right )|-7+4 \sqrt{3}\right )}{\sqrt{-\frac{1+x}{\left (1-\sqrt{3}+x\right )^2}} \sqrt{-1-x^3}}+\frac{2 \sqrt{2-\sqrt{3}} \left (c-\left (1+\sqrt{3}\right ) d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1-\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}+x}{1-\sqrt{3}+x}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{1+x}{\left (1-\sqrt{3}+x\right )^2}} \sqrt{-1-x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0220398, size = 62, normalized size = 0.24 \[ \frac{x \sqrt{x^3+1} \left (2 c \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-x^3\right )+d x \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};-x^3\right )\right )}{2 \sqrt{-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)/Sqrt[-1 - x^3],x]

[Out]

(x*Sqrt[1 + x^3]*(2*c*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3] + d*x*Hypergeometric2F1[1/2, 2/3, 5/3, -x^3]))/(2
*Sqrt[-1 - x^3])

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 269, normalized size = 1. \begin{align*}{-{\frac{2\,i}{3}}d\sqrt{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{1+x}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}} \left ( \left ({\frac{3}{2}}+{\frac{i}{2}}\sqrt{3} \right ){\it EllipticE} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ) -{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ) \right ){\frac{1}{\sqrt{-{x}^{3}-1}}}}-{{\frac{2\,i}{3}}c\sqrt{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{1+x}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)/(-x^3-1)^(1/2),x)

[Out]

-2/3*I*d*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((1+x)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^
(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*((3/2+1/2*I*3^(1/2))*EllipticE(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/
2))^(1/2),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))-EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)
,(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2)))-2/3*I*c*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((1+x)/(3/2+1
/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1
/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x + c}{\sqrt{-x^{3} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)/sqrt(-x^3 - 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-x^{3} - 1}{\left (d x + c\right )}}{x^{3} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^3 - 1)*(d*x + c)/(x^3 + 1), x)

________________________________________________________________________________________

Sympy [A]  time = 1.44814, size = 66, normalized size = 0.25 \begin{align*} - \frac{i c x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} - \frac{i d x^{2} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{5}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-x**3-1)**(1/2),x)

[Out]

-I*c*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3)) - I*d*x**2*gamma(2/3)*hyper((
1/2, 2/3), (5/3,), x**3*exp_polar(I*pi))/(3*gamma(5/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x + c}{\sqrt{-x^{3} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x + c)/sqrt(-x^3 - 1), x)